Biomarkers of hypothalamic–pituitary–adrenal axis activity in mice lacking 11β-HSD1 and H6PDH
نویسندگان
چکیده
Glucocorticoid concentrations are a balance between production under the negative feedback control and diurnal rhythm of the hypothalamic-pituitary-adrenal (HPA) axis and peripheral metabolism, for example by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the reduction of inactive cortisone (11-dehydrocorticosterone (11-DHC) in mice) to cortisol (corticosterone in mice). Reductase activity is conferred upon 11β-HSD1 by hexose-6-phosphate dehydrogenase (H6PDH). 11β-HSD1 is implicated in the development of obesity, and selective 11β-HSD1 inhibitors are currently under development. We sought to address the concern regarding potential up-regulation of the HPA axis associated with inhibition of 11β-HSD1. We assessed biomarkers for allele combinations of 11β-HSD1 and H6PDH derived from double heterozygous mouse crosses. H6PDH knock out (KO) adrenals were 69% larger than WT while 11β-HSD1 KO and double KO (DKO) adrenals were ~30% larger than WT - indicative of increased HPA axis drive in KO animals. ACTH-stimulated circulating corticosterone concentrations were 2.2-fold higher in H6PDH KO animals and ~1.5-fold higher in 11β-HSD1 KO and DKO animals compared with WT, proportional to the observed adrenal hypertrophy. KO of H6PDH resulted in a substantial increase in urinary DHC metabolites in males (65%) and females (61%). KO of 11β-HSD1 alone or in combination with H6PDH led to significant increases (36 and 42% respectively) in urinary DHC metabolites in females only. Intermediate 11β-HSD1/H6PDH heterozygotes maintained a normal HPA axis. Urinary steroid metabolite profile by gas chromatography/mass spectrometry as a biomarker assay may be beneficial in assaying HPA axis status clinically in cases of congenital and acquired 11β-HSD1/H6PDH deficiency.
منابع مشابه
Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis
Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including re...
متن کاملHypothalamic-Pituitary-Adrenal Axis Abnormalities in Response to Deletion of 11β-HSD1 is Strain-Dependent
Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11beta-HSD1 (129/MF1 HSD1(-/-)) have ...
متن کاملDiabetes and Insulin Injection Modalities: Effects on Hepatic and Hippocampal Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 in Juvenile Diabetic Male Rats
BACKGROUND Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often encountered in diabetes, leading to several clinical complications. Our recent results showing an elevated tetrahydrocortisol/tetrahydrocorticosterone ratio in morning urine of diabetic children compared to that of controls suggest an increased nocturnal activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HS...
متن کاملCellular and genetic models of H6PDH and 11β‐HSD1 function in skeletal muscle
Glucocorticoids are important for skeletal muscle energy metabolism, regulating glucose utilization, insulin sensitivity, and muscle mass. Nicotinamide adenine dinucleotide phosphate-dependent 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)-mediated glucocorticoid activation in the sarcoplasmic reticulum (SR) is integral to mediating the detrimental effects of glucocorticoid excess in muscle...
متن کاملGetting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium
Corticosteroids influence the development and function of the heart and its response to injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR) receptors. Systemic corticosteroid concentration depends largely on the activity of the hypothalamic-pituitary-adrenal (HPA) axis, but glucocorticoid can also be regenerated from intrinsically inert metabolites by the ...
متن کامل